个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连化物所
学位:博士
所在单位:化学学院
学科:分析化学
办公地点:大连理工大学西部校区化工综合楼D313
联系方式:+86-411-84986042
电子邮箱:bo.song@dlut.edu.cn
A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid
点击次数:
论文类型:期刊论文
发表时间:2015-11-01
发表刊物:BIOMATERIALS
收录刊物:SCIE、EI、PubMed
卷号:68
页面范围:21-31
ISSN号:0142-9612
关键字:Multisignal chemosensor; Ruthenium(II) complex; Hypochlorous acid; Bioimaging; In vivo analysis
摘要:Although considerable efforts have been made for the development of ruthenium(II) complex-based chemosensors and bioimaging reagents, the multisignal chemosensor using ruthenium(II) complexes as the reporter is scarce. In addition, the mechanisms of cellular uptake of ruthenium(II)-based chemosensors and their intracellular distribution are ill-defined. Herein, a new ruthenium(II) complex-based multisignal chemosensor, Ru-Fc, is reported for the highly sensitive and selective detection of lysosomal hypochlorous acid (HOCl). Ru-Fc is weakly luminescent because the MLCT (metal-to-ligand charge transfer) state is corrupted by the efficient PET (photoinduced electron transfer) process from Fc (ferrocene) moiety to Ru(II) center. The cleavage of Fc moiety by a HOCl-induced specific reaction leads to elimination of PET, which re-establishes the MLCT state of the Ru(II) complex, accompanied by remarkable photoluminescence (PL) and electrochemiluminescence (ECL) enhancements. The result of MIT assay showed that the proposed chemosensor, Ru-Fc, was low cytotoxicity. The applicability of Ru-Fc for the quantitative detection of HOCl in live cells was demonstrated by the confocal microscopy imaging and flow cytometry analysis. Dye colocalization studies confirmed very precise distribution of the Ru(II) complex in lysosomes, and inhibition studies revealed that the caveolae-mediated endocytosis played an important role during the cellular internalization of Ru-Fc. By using Ru-Fc as a chemosensor, the imaging of the endogenous HOCl generated in live macrophage cells during the stimulation was achieved. Furthermore, the practical applicability of Ru-Fc was demonstrated by the visualizing of HOCl in laboratory model animals, Daphnia magna and zebrafish. (C) 2015 Elsevier Ltd. All rights reserved.