教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 化工学院
学科: 精细化工
办公地点: 大连理工大学西部校区E-226
联系方式: 0411-84986304
电子邮箱: dujj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-05-01
发表刊物: Biomaterials
收录刊物: PubMed、SCIE、EI
卷号: 164
页面范围: 98-105
ISSN号: 1878-5905
关键字: Fluorescence probe; Polarity; Lysosomes; Ratiometric imaging; Cell
摘要: Lysosomal polarity affects the interaction activities between enzymes and substrates at the cellular level. Abnormal lysosomal polarity closely linked with disorders and diseases is worthy of attention. The first fluorescence probe, which can image polarity ratiometrically and detect lysosomal polarity quantitatively, is reported herein. The probe termed NOH can emit dual-peaks both in solvents (lambdaem = 474, 552 nm) and in micro-environment. NOH exhibits the Boltzmann function response of the fluorescence intensity ratio to the polarity in a wide range and localizes at lysosomes specifically (Rr = 0.97). In the method of ratiometric fluorescence imaging with NOH, the variation of lysosomal polarity (Deltaf) can be directly discerned by the color changes. In virtue of ratiometric fluorescence imaging and the Boltzmann function relationship between the fluorescence intensity ratio and the polarity, lysosomal polarity in MCF-7 cells was calculated to be 0.224 and the polarity in the condition of lysosomal storage disorders (or cell death) could also be obtained. This probe will be a promising tool for studying lysosome-related physiological or pathological processes. Copyright © 2018 Elsevier Ltd. All rights reserved.