陈霄
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2020-06-01
发表刊物:CATALYSTS
收录刊物:SCIE
卷号:10
期号:6
关键字:electrocatalytic hydrogenation; levulinic acid; valeric acid; lead
摘要:The electrocatalytic hydrogenation (ECH) of biomass-derived levulinic acid (LA) is a promising strategy to synthetize fine chemicals under ambient conditions by replacing the thermocatalytic hydrogenation at high temperature and high pressure. Herein, various metallic electrodes were investigated in the ECH of LA in a H-type divided cell. The effects of potential, electrolyte concentration, reactant concentration, and temperature on catalytic performance and Faradaic efficiency were systematically explored. The high conversion of LA (93%) and excellent "apparent" selectivity to valeric acid (VA) (94%) with a Faradaic efficiency of 46% can be achieved over a metallic lead electrode in 0.5 M H(2)SO(4)electrolyte containing 0.2 M LA at an applied voltage of -1.8 V (vs. Ag/AgCl) for 4 h. The combination of adsorbed LA and adsorbed hydrogen (H-ads) on the surface of the metallic lead electrode is key to the formation of VA. Interestingly, the reaction performance did not change significantly after eight cycles, while the surface of the metallic lead cathode became rough, which may expose more active sites for the ECH of LA to VA. However, there was some degree of corrosion for the metallic lead cathode in this strong acid environment. Therefore, it is necessary to improve the leaching-resistance of the cathode for the ECH of LA in future research.