秦攀

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:日本国立九州大学

学位:博士

所在单位:控制科学与工程学院

学科:模式识别与智能系统

办公地点:创新园大厦 B713

联系方式:qp112cn@dlut.edu.cn

电子邮箱:qp112cn@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Adaptively Weighted and Robust Mathematical Programming for the Discovery of Driver Gene Sets in Cancers

点击次数:

论文类型:期刊论文

发表时间:2019-04-11

发表刊物:SCIENTIFIC REPORTS

收录刊物:PubMed、SCIE

卷号:9

期号:1

页面范围:5959

ISSN号:2045-2322

摘要:High coverage and mutual exclusivity (HCME), which are considered two combinatorial properties of mutations in a collection of driver genes in cancers, have been used to develop mathematical programming models for distinguishing cancer driver gene sets. In this paper, we summarize a weak HCME pattern to justify the description of practical mutation datasets. We then present AWRMP, a method for identifying driver gene sets through the adaptive assignment of appropriate weights to gene candidates to tune the balance between coverage and mutual exclusivity. It embeds the genetic algorithm into the subsampling strategy to provide the optimization results robust against the uncertainty and noise in the data. Using biological datasets, we show that AWRMP can identify driver gene sets that satisfy the weak HCME pattern and outperform the state-of-arts methods in terms of robustness.