location: Current position: Home >> Scientific Research >> Paper Publications

Nonnegative Tensor Train Decompositions for Multi-domain Feature Extraction and Clustering

Hits:

Indexed by:会议论文

Date of Publication:2016-01-01

Included Journals:EI、CPCI-S

Volume:9949

Page Number:87-95

Key Words:EEG; Feature extraction; HALS; Tucker decomposition

Abstract:Tensor train (TT) is one of the modern tensor decomposition models for low-rank approximation of high-order tensors. For nonnegative multiway array data analysis, we propose a nonnegative TT (NTT) decomposition algorithm for the NTT model and a hybrid model called the NTT-Tucker model. By employing the hierarchical alternating least squares approach, each fiber vector of core tensors is optimized efficiently at each iteration. We compared the performances of the proposed method with a standard nonnegative Tucker decomposition (NTD) algorithm by using benchmark data sets including event-related potential data and facial image data in multi-domain feature extraction and clustering tasks. It is illustrated that the proposed algorithm extracts physically meaningful features with relatively low storage and computational costs compared to the standard NTD model.

Pre One:Humor Appreciation and Its Corresponding Processing Mechanism over a Lifespan

Next One:Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition