Hits:
Indexed by:期刊论文
Date of Publication:2016-12-01
Journal:SURFACE AND INTERFACE ANALYSIS
Included Journals:SCIE、EI、Scopus
Volume:48
Issue:13
Page Number:1423-1428
ISSN No.:0142-2421
Key Words:copper nanoparticle; molten-solidification; surface tension; copper droplet; molecular dynamics
Abstract:The melting and solidifying processes are carried out using molecular dynamics simulations. The influencing mechanism of the simulation size and the crystal configuration after solidification on the molten and the solidification properties is explored. The results demonstrate that the crystal structure of solidified copper nanoparticle is sensitive to the size of the copper nanocubes. Polycrystalline appears in the solidified copper nanoparticle for the relatively larger copper cubes; correspondingly, the grain boundaries give rise to the increase of the average atomic energy. Whereas for the relatively small copper cubes, the solidified copper nanoparticles mainly present monocrystalline structure. Moreover, the relationship between the internal pressure of the liquid copper droplets and the droplet diameter is studied to clarify the surface tension property at nanoscale. It is found that the internal pressure of the liquid copper droplets is logarithmically linearly dependent on the diameter of the copper droplets, implying that the surface tension of the liquid copper is not sensitive to the diameter of the liquid copper droplets. The present findings will be helpful to the preparation of the copper nanoparticle-based thin ribbon. Copyright (c) 2016 John Wiley & Sons, Ltd.