宋雪旦

(副教授)

 硕士生导师
学位:博士
性别:女
毕业院校:九州大学
所在单位:化学学院
电子邮箱:song@dlut.edu.cn

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Insights into the Anchoring of Polysulfides and Catalytic Performance by Metal Phthalocyanine Covalent Organic Frameworks as the Cathode in Lithium-Sulfur Batteries

发表时间:2022-10-05 点击次数:

论文名称:Insights into the Anchoring of Polysulfides and Catalytic Performance by Metal Phthalocyanine Covalent Organic Frameworks as the Cathode in Lithium-Sulfur Batteries
论文类型:期刊论文
发表刊物:ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷号:8
期号:27
页面范围:10185-10192
ISSN号:2168-0485
关键字:lithium-sulfur batteries; shuttle effect; metal phthalocyanine covalent organic frameworks; catalytic oxidation of Li2S; density functional theory
摘要:The outstanding advantages of lithium-sulfur (Li-S) batteries have made them a potential energy storage device. However, shuttle effect is one of the main problems that restrict the commercial application of Li-S batteries. Apart from it, accelerating the dissociation of Li2S to LiS and Li+ is also very important to achieve high Coulombic efficiency. Recently, it has been found that metal atoms exhibit strong interactions with lithium polysulfides (Li2Sx), which can be used as single-atom catalysts by embedding in the matrix. Covalent organic framework (COF) materials have porous structures and large surface area, which can anchor Li2Sx by introducing active sites. In this study, we constructed metal phthalocyanine COFs (MPc-COFs, M = Ti, V, Mn, Cu, and Zn) as the cathode, which combined the advantages of metal atoms and COFs. The adsorption and catalysis performance of Li2Sx species were investigated by MPc-COF cathode using density functional theory. The results show that the strong adsorption capacity of TiPc-COF and VPc-COF and the formation of axial complexes make them unfavorable for Li-S batteries. MnPc-COFs show excellent conductivity and sulfur fixation capacity, which also have a lower energy barrier in the catalytic oxidation of Li2S. This work has a guiding significance in the design of catalytic electrodes for Li-S batteries.
发表时间:2021-02-02