Hits:
Indexed by:期刊论文
Date of Publication:2014-08-01
Journal:JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
Included Journals:SCIE、EI、Scopus
Volume:136
Issue:8
ISSN No.:0022-1481
Key Words:OHP; superhydrophobic surface; superhydrophilic surface; liquid-vapor interface; oscillating motion; heat transfer
Abstract:The effects of superhydrophobic surface and superhydrophobic and superhydrophilic hybrid surface on the fluid flow and heat transfer of oscillating heat pipes (OHPs) were investigated in the paper. The inner surfaces of the OHPs were hydrophilic surface (copper), hybrid surface (superhydrophilic evaporation and superhydrophobic condensation section), and uniform superhydrophobic surface, respectively. De-ionized water was used as the working fluid. Experimental results showed that superhydrophobic surface influenced the slug motion and thermal performance of OHPs. Visualization results showed that the liquid-vapor interface was concave in the OHP with copper surface. A thin liquid film existed between the vapor plug and the wall of the OHP. On the contrary, the liquid-vapor interface took a convex profile in the OHP with superhydrophobic surface and the liquid-vapor interface contact line length in the hybrid surface OHP was longer than that in the uniform superhydrophobic surface OHP. The liquid slug movements became stronger in the hybrid surface OHPs as opposed to the copper OHP, while the global heat transfer performance of the hybrid surface OHPs increased by 5-20%. Comparing with the copper OHPs, the maximum amplitude and velocity of the liquid slug movements in the hybrid surface OHPs increased by 0-127% and 0-185%, respectively. However, the maximum amplitude and velocity of the liquid slug movements in the uniform superhydrophobic OHPs was reduced by 0-100% and 0-100%, respectively. The partial dryout phenomenon took place in OHPs with uniform superhydrophobic surface. The liquid slug movements became weaker and the thermal resistance was increased by 10-35% in the superhydrophobic surface OHPs.