个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
电子邮箱:ybc@dlut.edu.cn
Partial Sum Minimization of Singular Values Representation on Grassmann Manifolds
点击次数:
论文类型:期刊论文
发表时间:2018-02-01
发表刊物:ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
收录刊物:SCIE、EI、Scopus
卷号:12
期号:1
ISSN号:1556-4681
关键字:Low rank representation; partial sum minimization of singular values; subspace clustering; Grassmann manifolds; Laplacian matrix
摘要:Clustering is one of the fundamental topics in data mining and pattern recognition. As a prospective clustering method, the subspace clustering has made considerable progress in recent researches, e.g., sparse subspace clustering (SSC) and low rank representation (LRR). However, most existing subspace clustering algorithms are designed for vectorial data from linear spaces, thus not suitable for high-dimensional data with intrinsic non-linear manifold structure. For high-dimensional or manifold data, few research pays attention to clustering problems. The purpose of clustering on manifolds tends to cluster manifold-valued data into several groups according to the mainfold-based similarity metric. This article proposes an extended LRR model for manifold-valued Grassmann data that incorporates prior knowledge by minimizing partial sum of singular values instead of the nuclear norm, namely Partial Sum minimization of Singular Values Representation (GPSSVR). The new model not only enforces the global structure of data in low rank, but also retains important information by minimizing only smaller singular values. To further maintain the local structures among Grassmann points, we also integrate the Laplacian penalty with GPSSVR. The proposed model and algorithms are assessed on a public human face dataset, some widely used human action video datasets and a real scenery dataset. The experimental results show that the proposed methods obviously outperform other state-of-the-art methods.