尹宝才

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

电子邮箱:ybc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Probabilistic Linear Discriminant Analysis With Vectorial Representation for Tensor Data

点击次数:

论文类型:期刊论文

发表时间:2019-10-01

发表刊物:IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

收录刊物:SCIE

卷号:30

期号:10

页面范围:2938-2950

ISSN号:2162-237X

关键字:Bayesian inference; dimension reduction; face recognition; linear discriminant analysis (LDA); tensor decomposition

摘要:Linear discriminant analysis (LDA) has been a widely used supervised feature extraction and dimension reduction method in pattern recognition and data analysis. However, facing high-order tensor data, the traditional LDA-based methods take two strategies. One is vectorizing original data as the first step. The process of vectorization will destroy the structure of high-order data and result in high dimensionality issue. Another is tensor LDA-based algorithms that extract features from each mode of high order data and the obtained representations are also high-order tensor. This paper proposes a new probabilistic LDA (PLDA) model for tensorial data, namely, tensor PLDA. In this model, each tensorial data are decomposed into three parts: the shared subspace component, the individual subspace component, and the noise part. Furthermore, the first two parts are modeled by a linear combination of latent tensor bases, and the noise component is assumed to follow a multivariate Gaussian distribution. Model learning is conducted through a Bayesian inference process. To further reduce the total number of model parameters, the tensor bases are assumed to have tensor CandeComp/PARAFAC (CP) decomposition. Two types of experiments, data reconstruction and classification, are conducted to evaluate the performance of the proposed model with the convincing result, which is superior or comparable against the existing LDA-based methods.