Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
常洋洋

Associate Professor
Supervisor of Master's Candidates


Gender:Female
Alma Mater:中国科学院生态环境研究中心
Degree:Doctoral Degree
School/Department:环境学院
Discipline:Environmental Science. Environmental Engineering
Business Address:环境楼B507
E-Mail:yychang@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

An Origami Paper-Based Device Printed with DNAzyme-Containing DNA Superstructures for Escherichia coli Detection

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2019-08-01

Journal:MICROMACHINES

Included Journals:PubMed、SCIE

Volume:10

Issue:8

Key Words:colorimetric; DNAzyme; Escherichia coli; paper-based device; rolling circle amplification

Abstract:Rapid detection of pathogenic bacteria is extremely important for public health and safety. Here, we describe for the first time an integrated origami paper-based analytical device (PAD) incorporating cell lysis, molecular recognition, amplification and visual detection of Escherichia coli (E. coli). The device features three components: paper for its ability to extract protein molecules nonspecifically from cells, DNA superstructures for their ability to immobilize RNA-cleaving DNAzymes (RCDs) but undergo target-induced RNA cleavage on paper, and isothermal rolling circle amplification (RCA) for its ability to amplify each cleavage event into repetitive sequence units that can be detected by naked eye. This device can achieve detection of E. coli K12 with a detection limit of as low as 10(3) CFU center dot mL(-1) in a total turnaround time of 35 min. Furthermore, this device allowed the sensitive detection of E. coli in complex sample matrices such as juice and milk. Given that more specific RCDs can be evolved for diverse bacteria, the integrated PAD holds great potential for rapid, sensitive and highly selective detection of pathogenic bacteria in resource-limited settings.