个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:中国科学院生态环境研究中心
学位:博士
所在单位:环境学院
学科:环境科学. 环境工程
办公地点:环境楼B507
电子邮箱:yychang@dlut.edu.cn
An Origami Paper-Based Device Printed with DNAzyme-Containing DNA Superstructures for Escherichia coli Detection
点击次数:
论文类型:期刊论文
发表时间:2019-08-01
发表刊物:MICROMACHINES
收录刊物:PubMed、SCIE
卷号:10
期号:8
关键字:colorimetric; DNAzyme; Escherichia coli; paper-based device; rolling circle amplification
摘要:Rapid detection of pathogenic bacteria is extremely important for public health and safety. Here, we describe for the first time an integrated origami paper-based analytical device (PAD) incorporating cell lysis, molecular recognition, amplification and visual detection of Escherichia coli (E. coli). The device features three components: paper for its ability to extract protein molecules nonspecifically from cells, DNA superstructures for their ability to immobilize RNA-cleaving DNAzymes (RCDs) but undergo target-induced RNA cleavage on paper, and isothermal rolling circle amplification (RCA) for its ability to amplify each cleavage event into repetitive sequence units that can be detected by naked eye. This device can achieve detection of E. coli K12 with a detection limit of as low as 10(3) CFU center dot mL(-1) in a total turnaround time of 35 min. Furthermore, this device allowed the sensitive detection of E. coli in complex sample matrices such as juice and milk. Given that more specific RCDs can be evolved for diverse bacteria, the integrated PAD holds great potential for rapid, sensitive and highly selective detection of pathogenic bacteria in resource-limited settings.