姜楠

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:电气工程学院

学科:电工理论与新技术. 环境工程. 高电压与绝缘技术

办公地点:静电与特种电源研究所303

联系方式:jiangnan@dlut.edu.cn

电子邮箱:jiangnan@dlut.edu.cn

扫描关注

论文成果

当前位置: 姜楠 >> 科学研究 >> 论文成果

Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2-TiO2/zeolite catalyst

点击次数:

论文类型:期刊论文

发表时间:2016-06-01

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:SCIE、EI

卷号:293

页面范围:216-224

ISSN号:1385-8947

关键字:Non-thermal plasma; DBD; Bipolar pulsed power; Benzene; Plasma-catalytic process

摘要:In the present study, plasma-catalytic process was used to degrade benzene using the bipolar pulsed series surface/packed-bed discharge (SSPBD) reactor over MnO2-TiO2/zeolite catalyst at room temperature. The SSPBD reactor showed higher benzene degradation efficiency and CO2 selectivity than the traditional packed-bed discharge (PBD) and surface discharge (SD) reactor at the same discharge power. To increase the benzene degradation efficiency and decrease the energy loss, electrical parameters including the pulsed repetitive frequency (f) and pulse forming capacitances (C-P) were optimized. f = 50 Hz and C-P = 1 nF were considered to be the best choices. In comparison to the plasma-only process, the existence of MnO2-TiO2/zeolite and TiO2/zeolite catalysts significantly enhanced the benzene degradation efficiency and CO2 selectivity. Meanwhile, the highest benzene degradation efficiency of 83.7% and CO2 selectivity of 68.1% were obtained by the MnO2-TiO2/zeolite at 10.33 W, which were 4.9% and 5.6% higher than TiO2/zeolite. It could be attributed to the incorporation of Mn into TiO2 catalyst, which was beneficial to the charge transferring between Ti4+ and Me4+ on the surface of MnO2-TiO2/zeolite catalyst and facilitated the generation of hydroxyl radicals. MnO2-TiO2/zeolite also exhibited better performance in ozone suppression than TiO2/zeolite, which was mainly due to the strong ozone decomposing ability of MnO2. In addition, intermediate products (such as CO, HCOOH, N2O, etc.) were significantly inhibited by the MnO2-Tio(2)/zeolite catalyst based on the result of Fourier transform infrared spectra (FTIR). (C) 2016 Elsevier B.V. All rights reserved.