![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:盘锦校区食品与环境学院副院长 Vice Dean School of Food and Environment Panjin Campus Dalian University of Technology
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工海洋与生命学院
学科:环境工程. 环境科学
办公地点:环境学院 B 505
化工 海洋与生命学院 D05-201
联系方式:0427-2631799;
Development of a novel carbon-based conductive membrane with in-situ formed MnO2 catalyst for wastewater treatment in bio-electrochemical system (BES)
点击次数:
论文类型:期刊论文
发表时间:2018-03-01
发表刊物:JOURNAL OF MEMBRANE SCIENCE
收录刊物:SCIE、EI、Scopus
卷号:549
页面范围:533-542
ISSN号:0376-7388
关键字:Conductive membrane; Bio-electrochemical system; MnO2 catalyst; Wastewater treatment; Anti-fouling
摘要:A new carbon-based RGO/PVDF/MnO2 conductive membrane was developed to treat high load wastewater and recovery energy through bio-electrochemical system (BES), combining Membrane bioreactor (MBR) and Microbial fuel cell (MFC). The conductive membrane dual functions as the cathode of MFC and the filtration medium of MBR simultaneously. The structures of the conductive membrane were investigated by SEM, EDX and XPS, the existence of manganese dioxide catalyst, the high porosity and smooth surface morphology were confirmed. During operation, the membrane always maintained distinct ORR and electrochemical activity, exhibited excellent anti-fouling and flux recovery property, also better COD removal property than the control membrane without MnO2. Replacing proton exchange membrane (PEM) using Quartz sand chamber (QSC), the BES power density was 228 mW/m(3) higher than using PEM. The internal resistance, calculated in accordance with the power density curve using QSC was lower than that of the control group (respectively 752 Omega and 937 Omega). The results confirmed that it was feasible to replace the expensive PEM with cheap materials. The novel carbon-based conductive membrane with in-situ formed MnO2 catalyst and constructed BES with QSC were promising and beneficial for the future scale-up of BES.