![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:盘锦校区食品与环境学院副院长 Vice Dean School of Food and Environment Panjin Campus Dalian University of Technology
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工海洋与生命学院
学科:环境工程. 环境科学
办公地点:环境学院 B 505
化工 海洋与生命学院 D05-201
联系方式:0427-2631799;
Destruction of tetracycline hydrochloride antibiotics by FeOOH/TiO2 granular activated carbon as expanded cathode in low-cost MBR/MFC coupled system
点击次数:
论文类型:期刊论文
发表时间:2017-03-01
发表刊物:JOURNAL OF MEMBRANE SCIENCE
收录刊物:SCIE、EI、Scopus
卷号:525
页面范围:202-209
ISSN号:0376-7388
关键字:Oxygen reduction reaction (ORR); Membrane bioreactor (MBR); Microbial fuel cell (MFC); Granular activated carbon (GAC); Tetracycline hydrochloride
摘要:In this study, membrane bioreactor (MBR) and microbial fuel cell (MFC) was coupled for wastewater treatment using a polyvinylidene fluoride (PVDF) coated carbon fiber cloth as cathode membrane. To generate more power and mitigate membrane fouling, granular activated carbon (GAC) was added as a dynamic layer on cathode membrane. With or without FeOOH/TiO2 doping on GAC, 2e(-) or 4e(-) oxygen reduction reactions (ORRs) took place. The maximum power density reached 5.1 W m(-3) via 4e(-) ORR, practically the highest compared to similar MBR/MFC coupled systems. The removal of COD and NH4+-N was 90% and 80%, respectively. With FeOOH/ TiO2/GAC, hydrogen peroxide (H2O2) was formed via 2e(-) ORR, at 0.13 mg L-1 in effluent. Oxidative removal of a model pollutant tetracycline hydrochloride was 90% by reactive oxidizing species such as center dot OH. This is the first report of H2O2 synthesis using doped GAC as expanded cathode in coupled bio-electrochemical MBR/MFC system. Compared to other electrochemical systems, our bio-electrochemical system was more energy-saving and environmental-friendly in wastewater treatment.