柳丽芬

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:盘锦校区食品与环境学院副院长 Vice Dean School of Food and Environment Panjin Campus Dalian University of Technology

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工海洋与生命学院

学科:环境工程. 环境科学

办公地点:环境学院 B 505

化工 海洋与生命学院  D05-201

联系方式:0427-2631799;

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A novel conductive membrane with RGO/PVDF coated on carbon fiber cloth for fouling reduction with electric field in separating polyacrylamide

点击次数:

论文类型:期刊论文

发表时间:2016-07-10

发表刊物:JOURNAL OF APPLIED POLYMER SCIENCE

收录刊物:SCIE、EI、Scopus

卷号:133

期号:26

ISSN号:0021-8995

关键字:applications; conducting polymers; membranes; separation techniques

摘要:Directly applying an electric field on conductive membrane can effectively mitigate membrane fouling. Thus, a conductive reduced graphene oxide/polyvinylidene fluoride (RGO/PVDF) membrane was prepared by casting PVDF and graphene oxide (GO) solution over a selected carbon fiber cloth, then phase inversion and final heat treatment in hydroiodic acid (HI) solution. This method realized uniform and stable presence of RGO in PVDF membrane. Scanning electron microscopy (SEM) images showed addition of GO reduced the pore size of the composite membranes. The thermal HI treatment partially reduced graphene oxide to RGO, and made the membrane more conductive but less hydrophilic [as characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and contact angle (CA)]. From thermogravimetric analysis (TGA), it showed that the addition of GO and RGO improved the thermal stability of the membranes, when temperature was lower than 400 degrees C. The HI treatment increased the pore size and water flux of the RGO/PVDF membrane (being 71.6% higher than the GO/PVDF membrane). The RGO/PVDF membrane was used in separating polyacrylamide (PAM), a macromolecule pollutant in oil field waste water; when applying a 0.6 V/cm external electric field, its membrane fouling and flux decline was effectively slowed down, as shown in the fitting curves slopes using the classical cake filtration model (t/V-V). Being uniform and stable, the RGO/PVDF membrane had great potential for practical applications. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43597.