柳丽芬

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:盘锦校区食品与环境学院副院长 Vice Dean School of Food and Environment Panjin Campus Dalian University of Technology

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工海洋与生命学院

学科:环境工程. 环境科学

办公地点:环境学院 B 505

化工 海洋与生命学院  D05-201

联系方式:0427-2631799;

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment

点击次数:

论文类型:期刊论文

发表时间:2015-06-15

发表刊物:JOURNAL OF MEMBRANE SCIENCE

收录刊物:SCIE、EI、Scopus

卷号:484

页面范围:27-34

ISSN号:0376-7388

关键字:Membrane bioreactor; Microbial fuel cell; Cathodes catalyst; Membrane cathodes; Carbon fiber cloth pretreatment

摘要:An effective new cathode membrane (CM) with carbon fiber cloth, polyvinylidene fluoride (PVDF) and a catalyst containing C, Mn, Fe and O elements, was prepared. Firstly, the catalyst was in-situ formed on the fiber cloth via impregnation and high-temperature pyrolysis. Then for cathode membrane preparation, the fiber cloth after pyrolysis was coated with PVDF via casting and phase inversion. The membrane prepared performed well as electrodes and successfully integrated MBR with MFC. The surface morphology of the CM was studied using scanning electronic microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analysis confirmed the existence of PVIN and catalyst components. The carbon cathode membrane with C-Mn-Fe-O catalyst (CCMT) was compared with carbon fiber cloth cathode membrane without the catalyst (CCMO) in MFC/MBR, the coupled wastewater treatment system (without inoculating sludge biomass in cathode chamber). In the configured system, the 2 cm distance between the electrodes could effectively isolate the anodic environment (DO=0.01 mg L-1) from the aerobic cathodic condition (DO=4.81 mg L-1). In the system with CCMT, the removal rates of COD, NELI-N, and TP were above 90%, 80% and 65%, respectively, and removal of NH4 -N was found converted to N-2. Its maximum generated power density reached 1358 mW m(-3), 4 times higher than using CCMO (337 mW m(-3)). The inner resistance in system with CCMT was 71 Omega, 2.7 times lower than using CCMO (194 Omega). (C) 2015 Elsevier B.V. All rights reserved.