![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:盘锦校区食品与环境学院副院长 Vice Dean School of Food and Environment Panjin Campus Dalian University of Technology
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工海洋与生命学院
学科:环境工程. 环境科学
办公地点:环境学院 B 505
化工 海洋与生命学院 D05-201
联系方式:0427-2631799;
E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode
点击次数:
论文类型:期刊论文
发表时间:2013-08-15
发表刊物:CHEMICAL ENGINEERING JOURNAL
收录刊物:SCIE、EI、Scopus
卷号:230
页面范围:491-498
ISSN号:1385-8947
关键字:Gr/PPy composites; Cathode electro-Fenton; Electra-catalytic cathodic membrane; MB degradation; Polymer membrane
摘要:The integration of two or more conventional technologies has been proved effective in enhancing water treatment efficiency. E-Fenton degradation of pollutants by conductive functionalized polymer membrane cathode is rare. In this study, a novel conductive membrane/electrode was prepared by modifying a polyester filter cloth/fabric membrane with impregnated graphene (Gr) and coated polypyrrole (PPy) via the vapor phase polymerization method (VPM). The composite membrane has uniformly coated and firmly attached Gr/PPy, it is highly conductive, of low electric resistance. When it was used as the cathode for removing Methylene Blue (MB) by E-Fenton reactions under membrane filtration mode, with stainless iron mesh as the anode, the parameters affecting the E-Fenton reaction were investigated. It was found that appropriate aeration, pH value, membrane flux and electric field strength all affected the cathodic membrane performance in E-Fenton system. MB, the target pollutant, was significantly degraded by the in situ generated hydrogen peroxide, and the combined function of membrane and catalysis on pollutants makes the effect even better. The membrane cathode was stable and its performance was further promoted by doping with AQS (anthraquionone monosulfate), which enabled more effective integration of membrane with electro-catalysis. (c) 2013 Elsevier B.V. All rights reserved.