个人信息Personal Information
研究员
博士生导师
硕士生导师
任职 : 高分子材料系副系主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理. 功能材料化学与化工
办公地点:大连理工大学西部校区化工实验楼A407室
联系方式:Tel.: 0411-84986191
电子邮箱:liuch1115@dlut.edu.cn
Phthalonitrile-functionalized poly(ether imide) oligomers derived from phthalazinone-containing dianhydride: facile synthesis, curing and properties
点击次数:
论文类型:期刊论文
发表时间:2018-03-01
发表刊物:POLYMER BULLETIN
收录刊物:SCIE、EI、Scopus
卷号:75
期号:3
页面范围:1037-1054
ISSN号:0170-0839
关键字:Poly(ether imide); 4-Phenyl phthalazinone; Phthalonitrile oligomer; Thermal property
摘要:A novel series of soluble and curable poly(ether imide) oligomers (PPEI-Phs) containing phthalazinone moiety and terminal phthalonitrile groups were prepared from an excess amount of phthalazinone-based dianhydride and 4,4'-diaminodiphenyl ether, followed by being end-capped with 4-(3-aminophenoxy)phthalonitrile in a two-step, one-pot reaction. The phthalazinone-based PPEI-Phs were cured by a heating treatment procedure up to 350 A degrees C, in the presence of 4,4'-diaminodiphenylsulfone to obtain the cross-linked polymers (cPPEI-Phs). Fourier transform infrared and elemental analysis was utilized to confirm the chemical structures of the resultant oligomers and cross-linked polymers. PPEI-Phs exhibited good solubility in polar aprotic solvents, such as N-methyl pyrrolidone, m-cresol and pyridine, partially soluble in N,N-dimethyl-2-acetamide and chloroform, while the cross-linked cPPEI-Phs were insoluble in all tested solvents, even in sulfuric acid. Furthermore, the gel content of the cPPEI-Phs samples ranged from 96 to 88%, which confirmed the formation of cross-linked network. PPEI-Phs showed high glass transition temperature (T (g)) ranged from 225 to 286 A degrees C as determined by differential scanning calorimetry, however, no detectable T (g) was observed after thermal curing. cPPEI-Phs exhibited T (d5%) in the range of 529-545 A degrees C, which is up to 49 A degrees C higher than the PPEI-Phs, indicating the crosslinking structures of cPPEI-Phs. Moreover, all of cPPEI-Phs displayed high limited oxygen index up to 46.7, which can be attributed to the formation of N-heterocyclic s-triazine or phthalocyanine structures during the curing procedure.