location: Current position: Home >> Scientific Research >> Paper Publications

Numerical and Experimental Investigation of Pulsed Laser Welding of Hastelloy C-276 Alloy Sheets

Hits:

Indexed by:会议论文

Date of Publication:2010-11-06

Included Journals:EI、CPCI-S、Scopus

Volume:154-155

Page Number:1468-1471

Key Words:Pulsed Laser Welding; Hastelloy C-276 alloy; Temperature Field; Numerical Simulation

Abstract:In this paper, a three-dimensional finite element model is developed to compute thermal phenomena of 0.5 mm thick Hastelloy C-276 alloy sheets during pulsed laser beam welding (PLBW). Temperature-dependent thermal properties of Hastelloy C-276 alloy, effect of latent heat of fusion, and the convective and radiative boundary conditions are taken into account in the model. The space-time temperature distributions in a butt-joint weld produced by the PLBW process are predicted from the beginning of welding to the final cooling. The heat input to the model is assumed to be a double ellipsoid heat source. The finite element calculations are performed by using ANSYS code with the parametric design capabilities. Experiments were carried out to determine the temperature evolution during welding and to measure the cross section profile of the weld bead. By comparing the simulation results with the corresponding experimental findings, it is found that they are in a good agreement. The validity and applicability of the numerical simulation model are confirmed.

Pre One:Effect of laser Welding quality of Nuclear Reactor Coolant Pump Can on Eddy Current Losses

Next One:Effect of Scanning Path on Microstructure and Microhardness of Laser Cladding Ti-6Al-4V Alloy