张雷

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:明知大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:大连理工大学西部校区环境楼 B701

联系方式:Email: zhanglei78@dlut.edu.cn Mobile: 13130499670

电子邮箱:zhanglei78@dlut.edu.cn

扫描关注

论文成果

当前位置: 张雷-环境 >> 科学研究 >> 论文成果

Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue

点击次数:

论文类型:期刊论文

发表时间:2019-11-01

发表刊物:ENVIRONMENTAL POLLUTION

收录刊物:EI、PubMed、SCIE

卷号:254

期号:Pt B

页面范围:113005

ISSN号:0269-7491

关键字:Biochar; Adsorption; Norfloxacin; Anionic surfactant; Furfural residue

摘要:Norfloxacin (NOR) is a persistent organic pollutant and can be effectively removed from effluent by adsorption of biochar. However, the presence of other emerging contaminants, such as surfactants, will potentially alter adsorption performance of norfloxacin by biochar and the molecular-scale mechanisms of the interaction between surfactants and biochar remain poorly understood. In this study, adsorption of norfloxacin on magnetic biochar prepared with iron-containing furfural residue (FRMB) in the presence or absence of anionic surfactants was investigated. The adsorption of NOR was significantly affected by the initial pH and anionic surfactants-sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS). In the presence of SDS and SDBS, the maximum sorption capacities of NOR were 2.33 and 1.97 times higher than that in the absence of surfactants, reached to 698.6 mg g(-1) and 589.9 mg g(-1), respectively. The optimal pH condition which was 4 indicated that electrostatic adsorption played a decisive role in the adsorption process after introduction of SDS/SDBS. The adsorption data were fitted well by the Elovich model and Freundlich model at the optimal conditions in which both SDS and SDBS were hemimicelle (0.8 mM SDS or 0.4 mM SDBS), indicating surface heterogeneity of FRMB and the adsorption mechanism was related to the assembly of surfactants on biochar. MR results showed that FRMB and SDS/SDBS interacted through hydrophobic action, and more complex or aggregates were formed between the NOR and biochar/SDS/SDBS. This work highlights the synergistic enhancement effects of tested surfactants on the removal of NOR by magnetic biochar from aqueous systems. (C) 2019 Elsevier Ltd. All rights reserved.