Hits:
Indexed by:期刊论文
Date of Publication:2012-07-01
Journal:IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
Included Journals:SCIE、EI、PubMed
Volume:9
Issue:4
Page Number:1190-1202
ISSN No.:1545-5963
Key Words:Biomedical text mining; hash; interaction extraction; graph kernel
Abstract:Extracting protein-protein interaction (PPI) from biomedical literature is an important task in biomedical text mining (BioTM). In this paper, we propose a hash subgraph pairwise (HSP) kernel-based approach for this task. The key to the novel kernel is to use the hierarchical hash labels to express the structural information of subgraphs in a linear time. We apply the graph kernel to compute dependency graphs representing the sentence structure for protein-protein interaction extraction task, which can efficiently make use of full graph structural information, and particularly capture the contiguous topological and label information ignored before. We evaluate the proposed approach on five publicly available PPI corpora. The experimental results show that our approach significantly outperforms all-path kernel approach on all five corpora and achieves state-of-the-art performance.