location: Current position: Home >> Scientific Research >> Paper Publications

Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks

Hits:

Indexed by:期刊论文

Date of Publication:2012-06-21

Journal:PROTEOME SCIENCE

Included Journals:SCIE、PubMed

Volume:10

Issue:Suppl 1

Page Number:S18

ISSN No.:1477-5956

Abstract:Background: Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification.
   Results: A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics.
   Conclusions: The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

Pre One:Hash Subgraph Pairwise Kernel for Protein-Protein Interaction Extraction

Next One:基于上下文环境和句法分析的蛋白质关系抽取