王健

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术

办公地点:创新园大厦B811

联系方式:0411-84706009-2811

电子邮箱:wangjian@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A protein-protein interaction extraction approach based on deep neural network

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS

收录刊物:SCIE、Scopus

卷号:15

期号:2

页面范围:145-164

ISSN号:1748-5673

关键字:deep learning; biomedical text mining; interaction extraction; neural network

摘要:Protein-Protein Interactions (PPIs) information extraction from biomedical literature helps unveil the molecular mechanisms of biological processes. Machine learning methods have been the most popular ones in PPI extraction area. However, these methods are still feature engineering-based, which means that their performances are also heavily dependent on the appropriate feature selection which is still a skill-dependent task. This paper presents a deep neural network-based approach which can learn complex and abstract features automatically from unlabelled data by unsupervised representation learning methods. This approach first employs the training algorithm of auto-encoders to initialise the parameters of a deep multilayer neural network. Then the gradient descent method using back propagation is applied to train this deep multilayer neural network model. Experimental results on five public PPI corpora show that our method can achieve better performance than can a multilayer neural network: on two 'toughest handling' corpora AImed and BioInfer, the former outperforms the latter with the improvements of 3.10 and 2.89 percentage units in F-score, respectively. In addition, the performance comparison with APG also verifies the effectiveness of our method.