Bin Liu
Personal Homepage
Paper Publications
Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation
Hits:

Indexed by:Journal Papers

Date of Publication:2020-01-01

Journal:IEEE ACCESS

Included Journals:SCIE

Volume:8

Page Number:58533-58545

ISSN No.:2169-3536

Key Words:MRI; brain tumor segmentation; U-Net; attention gate; residual module

Abstract:Brain tumor segmentation technology plays a pivotal role in the process of diagnosis and treatment of MRI brain tumors. It helps doctors to locate and measure tumors, as well as develop treatment and rehabilitation strategies. Recently, MRI brain tumor segmentation methods based on U-Net architecture have become popular as they largely improve the segmentation accuracy by applying skip connection to combine high-level feature information and low-level feature information. Meanwhile, researchers have demonstrated that introducing attention mechanism into U-Net can enhance local feature expression and improve the performance of medical image segmentation. In this work, we aim to explore the effectiveness of a recent attention module called attention gate for brain tumor segmentation task, and a novel Attention Gate Residual U-Net model, i.e., AGResU-Net, is further presented. AGResU-Net integrates residual modules and attention gates with a primeval and single U-Net architecture, in which a series of attention gate units are added into the skip connection for highlighting salient feature information while disambiguating irrelevant and noisy feature responses. AGResU-Net not only extracts abundant semantic information to enhance the ability of feature learning, but also pays attention to the information of small-scale brain tumors. We extensively evaluate attention gate units on three authoritative MRI brain tumor benchmarks, i.e., BraTS 2017, BraTS 2018 and BraTS 2019. Experimental results illuminate that models with attention gate units, i.e., Attention Gate U-Net (AGU-Net) and AGResU-Net, outperform their baselines of U-Net and ResU-Net, respectively. In addition, AGResU-Net achieves competitive performance than the representative brain tumor segmentation methods.

Personal information

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Male

Alma Mater:大连理工大学

Degree:Doctoral Degree

School/Department:软件学院、国际信息与软件学院

Discipline:Software Engineering. Computer Applied Technology

Business Address:大连市经济技术开发区图强街321号大连理工大学开发区校区信息楼

Contact Information:laohubinbin@163.com

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version