location: Current position: Dazhi Wang >> Scientific Research >> Paper Publications

Electrochemical determination of glutamic pyruvic transaminase using a microfluidic chip

Hits:

Indexed by:期刊论文

Date of Publication:2017-02-01

Journal:MICROFLUIDICS AND NANOFLUIDICS

Included Journals:SCIE、EI

Volume:21

Issue:2

ISSN No.:1613-4982

Key Words:Electrochemical detection; Microfluidic chip; Glutamic pyruvic transaminase; NADH

Abstract:The activity within the microfluidic chip was realized, and the time-consuming problem was remarkably improved too. The activity of glutamic pyruvic transaminase (GPT) is an important clinical evidence for some acute diseases such as acute hepatopathy and myocardial infarction. Thus, there is a demand for rapid determination of GPT in small formats at point-of-need. Herein, we describe a novel method of electrochemical determination of GPT with microfluidic technique. GPT activity was indirectly determined via the electrochemical (EC) detection of nicotinamide adenine dinucleotide (NADH) produced from the GPT transdeamination reaction. A type of microfluidic chip was developed, in which a passive mixer comprising 100 sub-ribs and a three-electrode strip for EC were integrated. To verify the response to NADH, a series of NADH concentrations varying from 19 mu M to 5 mM were calibrated with cyclic voltammetry within the microfluidic chip. And a linear relationship with R-2 0.9982 between the peak current and the concentration of NADH was obtained. Then, the GPT activity was determined using the chips containing and not containing a ribs-type mixer. And a linear relationship which contained two sections between the GPT activity and the peak current was obtained. The chip with a ribs-type mixer exhibited the sensitivity of 0.0341 mu A U-1 L in the range of 10-50 U L-1 and 0.0236 mu A U-1 L in the range of 50-250 U L-1. And the detection limit of the chip with a ribs-type mixer was 9.25 U L-1. The complete detection process of GPT activity within the microfluidic chip was realized, and the time-consuming problem was remarkably improved too.

Pre One:Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels

Next One:High Performance Electrodes for All-Solid-State Supercapacitor