个人信息Personal Information
研究员
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:微机电工程. 机械制造及其自动化. 精密仪器及机械
办公地点:大连理工大学西部校区机械学院大方楼6029
联系方式:大连理工大学机械工程学院
电子邮箱:jsliang@dlut.edu.cn
Numerical simulation of coaxial electrohydrodynamic jet and printing nanoscale structures
点击次数:
论文类型:期刊论文
发表时间:2019-12-01
发表刊物:MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS
收录刊物:EI、SCIE
卷号:25
期号:12
页面范围:4651-4661
ISSN号:0946-7076
摘要:The aim of this work is to simulate the formation of coaxial electrohydrodynamic jet (CE-Jet) and obtain the optimized working parameters for coaxial electrohydrodynamic focused jet printing (CEFJP), then further direct writing nanoscale structures. In this paper, a pioneering simulation of CE-Jet process based on three phase flow of liquid-liquid-air model was developed. The photoresist (AZ703)/silicone oil was employed to verify the simulation. The simulated result of the CE-Jet consisted with the experimental result very well, which proves the correction of the CE-Jet model. Based on the simulation, the effect of working parameters including the applied voltage and the flow rate of inner coaxial liquid on the morphology and size of the CE-Jet were examined. With the use of the optimized working parameters obtained from the simulation and taking the materials of lead zirconate titanate (PZT) and photoresist (AZ703) as inner liquid, the stable nanoscale inner jet was focused by the compound effect of electrical shearing force, viscous shearing force and internal pressure. Then, the nanostructures of various patterns with diameter of 70 nm were directly printed. The CE-Jet model developed in this work provides a powerful tool to investigate the CEFJP process, and the CEFJP technique exhibited a promising method for producing nanoscale structures for M/NEMS devices.