![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 精细化工全国重点实验室主任,教育部智能材料化工前沿科学中心执行主任,大连理工大学膜科学与技术研究开发中心主任
性别:女
毕业院校:中国科学院大连化物所
学位:博士
所在单位:化工学院
学科:化学工程. 膜科学与技术. 生物医学工程
联系方式:hgaohong@dlut.edu.cn
电子邮箱:hgaohong@dlut.edu.cn
Improvement of alkaline stability for hydroxide exchange membranes by the interactions between strongly polar nitrile groups and functional cations
点击次数:
论文类型:期刊论文
发表时间:2017-07-01
发表刊物:JOURNAL OF MEMBRANE SCIENCE
收录刊物:SCIE、EI
卷号:533
页面范围:121-129
ISSN号:0376-7388
关键字:Anion exchange membrane; Alkaline stability; Fuel cell; Imidazolium; Morpholinium
摘要:Hydroxide exchange membrane fuel cells (HEMFCs) are attracting growing interest owing to their advantages such as low cost and high power density. However, their applications are hindered due to the poor stability of the membrane. Here, we proposed a novel strategy to improve the alkaline stability of hydroxide exchange membranes (HEMs) using the interactions between strongly polar nitrile groups and side-chain functional cations. A poly(ether nitrile) (PEN) was synthesized by the polycondensation of bisphenol A and 2,6-difluorobenzonitrile, and then imidazolium and morpholinium functional groups were integrated by the typical chloromethylation-functionalization method. The existence of the interactions between nitrile groups and cation groups i.e. imidazolium and morpholinium, was proved by the density functional theory calculations. The interactions have two positive effects that contribute to the improvement of the alkaline stability of the PEN based membranes. On the one hand, they increase the LUMO energies of the functional groups; and on the other hand they reduce the free volume around hydrated cationic groups. As a result, PEN based membranes showed much better alkaline stabilities compared to the membrane based on commercial polysulfone that has a similar chemical structure. In addition, given similar swelling ratios, PEN based membranes exhibited higher hydroxide conductivities than simple polysulfone based ones.
上一条:Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system
下一条:Formation Mechanism of the Spiral-Like Structure of a Hydrogen Bond Network Confined in a Fluorinated Nanochannel: A Molecular Dynamics Simulation