![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 精细化工全国重点实验室主任,教育部智能材料化工前沿科学中心执行主任,大连理工大学膜科学与技术研究开发中心主任
性别:女
毕业院校:中国科学院大连化物所
学位:博士
所在单位:化工学院
学科:化学工程. 膜科学与技术. 生物医学工程
联系方式:hgaohong@dlut.edu.cn
电子邮箱:hgaohong@dlut.edu.cn
Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles
点击次数:
论文类型:期刊论文
发表时间:2016-12-09
发表刊物:BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
收录刊物:SCIE、PubMed、Scopus
卷号:481
期号:3-4
页面范围:206-211
ISSN号:0006-291X
关键字:Biomimetic membrane; Calcium regulation; Drug discovery; Electrostatic fusion; Lipid reconstitution; Transport proteins
摘要:We have developed a charge-mediated fusion method to reconstitute the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in giant unilamellar vesicles (GUV). Intracellular Ca2+ transport by SERCA controls key processes in human cells such as proliferation, signaling, and contraction. Small-molecule effectors of SERCA are urgently needed as therapeutics for Ca2+ dysregulation in human diseases including cancer, diabetes, and heart failure. Here we report the development of a method for efficiently reconstituting SERCA in GUV, and we describe a streamlined protocol based on optimized parameters (e.g., lipid components, SERCA preparation, and activity assay requirements). ATP-dependent Ca2+ transport by SERCA in single GUV was detected directly using confocal fluorescence microscopy with the Ca2+ indicator Fluo-5F. The GUV reconstitution system was validated for functional screening of Ca2+ transport using thapsigargin (TG), a small-molecule inhibitor of SERCA currently in clinical trials as a prostate cancer prodrug. The GUV system overcomes the problem of inhibitory Ca2+ accumulation for SERCA in native and reconstituted small unilamellar vesicles (SUV). We propose that charge-mediated fusion provides a widely-applicable method for GUV reconstitution of clinically-important membrane transport proteins. We conclude that GUV reconstitution is a technological advancement for evaluating small molecule effectors of SERCA. (C) 2016 Elsevier Inc. All rights reserved.