贺高红

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 精细化工全国重点实验室主任,教育部智能材料化工前沿科学中心执行主任,大连理工大学膜科学与技术研究开发中心主任

性别:女

毕业院校:中国科学院大连化物所

学位:博士

所在单位:化工学院

学科:化学工程. 膜科学与技术. 生物医学工程

联系方式:hgaohong@dlut.edu.cn

电子邮箱:hgaohong@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hydrophilic Flexible Ether Containing, Cross-Linked Anion-Exchange Membrane Quaternized with DABCO

点击次数:

论文类型:期刊论文

发表时间:2020-01-22

发表刊物:ACS APPLIED MATERIALS & INTERFACES

收录刊物:PubMed、EI、SCIE

卷号:12

期号:3

页面范围:3510-3521

ISSN号:1944-8244

关键字:ether-containing cross-links; anion-exchange membrane; DABCO; conductivity; stability

摘要:Anion-exchange membranes (AEM) with high ion content usually suffer from excessive water absorption and dilution effects that impair conductivity and mechanical properties. We herein report a novel ether containing a cross-linking strategy without adopting high ion-exchange capacity (IEC). The ether-containing cross-links and the quaternized structure are created simultaneously by introducing an ether-containing flexible hydrophilic spacer between two 1,4-diazabicyclo[2,2,2,2]octane or DABCO molecules; the resultant bi-DABCO structure was further employed to react with chloromethylated polysulfone. The long spacer with the ether moiety may benefit the hydroxide ion transport, and the cross-links will control the swelling and water absorption of the AEM. The two ether groups in the long spacer of the cross-links will also shield the DABCO cation from OH- attack due to an electron-donating effect. The prepared membranes exhibited an improved conductivity of 31 mS/cm (at 25 degrees C) at a comparatively low IEC (1.08 mmol/g) with a rational water absorption and low swelling ratio (95.0 and 27.1%, respectively); they also displayed an enhanced alkaline stability in 1 M NaOH aqueous solution at 80 degrees C for 150 h. The density functional theory study and physical characterization after the alkaline treatment further confirm the better chemical stability of the cross-linked membrane over its counterpart. Our work presents an effective strategy to balance AEM conductivity and robustness.