![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 精细化工全国重点实验室主任,教育部智能材料化工前沿科学中心执行主任,大连理工大学膜科学与技术研究开发中心主任
性别:女
毕业院校:中国科学院大连化物所
学位:博士
所在单位:化工学院
学科:化学工程. 膜科学与技术. 生物医学工程
联系方式:hgaohong@dlut.edu.cn
电子邮箱:hgaohong@dlut.edu.cn
Co3O4 Nanosheets Preferentially Growing (220) Facet with a Large Amount of Surface Chemisorbed Oxygen for Efficient Oxidation of Elemental Mercury from Flue Gas
点击次数:
论文类型:期刊论文
发表时间:2021-02-02
发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷号:54
期号:14
页面范围:8601-8611
ISSN号:0013-936X
摘要:Oxygen vacancies can capture and activate gaseous oxygen, forming surface chemisorbed oxygen, which plays an important role in the Hg-0 oxidation process. Fine control of oxygen vacancies is necessary and a major challenge in this field. A novel method for facet control combined with morphology control was used to synthesize Co3O4 nanosheets preferentially growing (220) facet to give more oxygen vacancies. X-ray photoelectron spectroscopy (XPS) results show that the (220) facet has a higher Co3+/Co2+ ratio, leading to more oxygen vacancies via the Co3+ reduction process. Density functional theory (DFT) calculations confirm that the (220) facet has a lower oxygen vacancy formation energy. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results suggest that Co3O4 nanosheets yield more defects during the synthesis process. These results are the reasons for the greater number of oxygen vacancies in Co3O4 nanosheets, which is confirmed by electron energy loss spectroscopy (EELS), Raman spectroscopy, and photoluminescence (PL) spectroscopy. Therefore, Co3O4 nanosheets show excellent Hg-0 removal efficiency over a wide temperature range of 100-350 degrees C at a high gas hourly space velocity (GHSV) of 180 000 h(-1). Additionally, the catalytic efficiency of Co3O4 nanosheets is still greater than 83%, even after 80 h of testing, and it recovers to its original level after 2 h of in situ thermal treatment at 500 degrees C.