个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Saliency Detection with Recurrent Fully Convolutional Networks
点击次数:
论文类型:会议论文
发表时间:2016-01-01
收录刊物:CPCI-S、SCIE
卷号:9908
页面范围:825-841
关键字:Saliency detection; Recurrent fully convolutional network
摘要:Deep networks have been proved to encode high level semantic features and delivered superior performance in saliency detection. In this paper, we go one step further by developing a new saliency model using recurrent fully convolutional networks (RFCNs). Compared with existing deep network based methods, the proposed network is able to incorporate saliency prior knowledge for more accurate inference. In addition, the recurrent architecture enables our method to automatically learn to refine the saliency map by correcting its previous errors. To train such a network with numerous parameters, we propose a pre-training strategy using semantic segmentation data, which simultaneously leverages the strong supervision of segmentation tasks for better training and enables the network to capture generic representations of objects for saliency detection. Through extensive experimental evaluations, we demonstrate that the proposed method compares favorably against state-of-the-art approaches, and that the proposed recurrent deep model as well as the pre-training method can significantly improve performance.