卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Kernelized Subspace Ranking for Saliency Detection

点击次数:

论文类型:会议论文

发表时间:2016-01-01

收录刊物:CPCI-S、SCIE

卷号:9912

页面范围:450-466

关键字:Saliency detection; Subspace ranking; Feature projection

摘要:In this paper, we propose a novel saliency method that takes advantage of object-level proposals and region-based convolutional neural network (R-CNN) features. We follow the learning-to-rank methodology, and solve a ranking problem satisfying the constraint that positive samples have higher scores than negative ones. As the dimensionality of the deep features is high and the amount of training data is low, ranking in the primal space is suboptimal. A new kernelized subspace ranking model is proposed by jointly learning a Rank-SVM classifier and a subspace projection. The projection aims to measure the pairwise distances in a low-dimensional space. For an image, the ranking score of each proposal is assigned by the learnt ranker. The final saliency map is generated by a weighted fusion of the top-ranked candidates. Experimental results show that the proposed algorithm performs favorably against the state-of-the-art methods on four benchmark datasets.