个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Robust Visual Tracking via Least Soft-Threshold Squares
点击次数:
论文类型:期刊论文
发表时间:2016-09-01
发表刊物:IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
收录刊物:SCIE、EI、Scopus
卷号:26
期号:9
页面范围:1709-1721
ISSN号:1051-8215
关键字:Gaussian-Laplacian noise; least soft-threshold squares (LSS); linear representation; visual tracking
摘要:In this paper, we propose an online tracking algorithm based on a novel robust linear regression estimator. In contrast to existing methods, the proposed least soft-threshold squares (LSS) algorithm models the error term with the Gaussian-Laplacian distribution, which can be efficiently solved. For visual tracking, the Gaussian-Laplacian noise assumption enables our LSS model to handle the normal appearance change and outlier simultaneously. Based on the maximum joint likelihood of parameters, we derive an LSS distance metric to measure the difference between an observation sample and a dictionary of positive templates. Compared with the distance derived from ordinary least squares methods, the proposed metric is more effective in dealing with the outliers. In addition, we provide insights on the relationships among the LSS problem, Huber loss function, and trivial templates, which facilitate better understandings of the existing tracking methods. Finally, we develop a robust tracking algorithm based on the LSS distance metric with an update scheme and negative templates, and speed it up with a particle selection mechanism. Experimental results on numerous challenging image sequences demonstrate that the proposed tracking algorithm performs favorably than the state-of-the-art methods.