个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Visual Tracking via Random Walks on Graph Model
点击次数:
论文类型:期刊论文
发表时间:2016-09-01
发表刊物:IEEE TRANSACTIONS ON CYBERNETICS
收录刊物:SCIE、EI、Scopus
卷号:46
期号:9
页面范围:2144-2155
ISSN号:2168-2267
关键字:Absorbing Markov chain; ergodic Markov chain; random walks; visual tracking
摘要:In this paper, we formulate visual tracking as random walks on graph models with nodes representing superpixels and edges denoting relationships between superpixels. We integrate two novel graphs with the theory of Markov random walks, resulting in two Markov chains. First, an ergodic Markov chain is enforced to globally search for the candidate nodes with similar features to the template nodes. Second, an absorbing Markov chain is utilized to model the temporal coherence between consecutive frames. The final confidence map is generated by a structural model which combines both appearance similarity measurement derived by the random walks and internal spatial layout demonstrated by different target parts. The effectiveness of the proposed Markov chains as well as the structural model is evaluated both qualitatively and quantitatively. Experimental results on challenging sequences show that the proposed tracking algorithm performs favorably against state-of-the-art methods.