雷振坤
Personal Homepage
Publications
Current location: Home >> Scientific Research >> Publications
Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test
Hits:

Indexed by:期刊论文

Date of Publication:2019-10-01

Journal:COMPOSITES PART B-ENGINEERING

Included Journals:SCIE、EI

Volume:174

ISSN No.:1359-8368

Key Words:Fabric/textiles; Shear thickening fluid; Energy absorption

Abstract:Impregnating fabrics with shear thickening fluid (STF) to form bi-phase composite is a potential method to improve the bulletproof resistance of flexible fabrics. In this study, a planetary ball milling method was used to prepare STF with 62, 65 and 70 wt% mass fraction using silica (SiO2) as dispersing phase and ethylene glycol as dispersant. The Kevlar 49 plain woven fabric was impregnated to form bi-phase composite. The yarn pull-out tests of neat fabrics and STF impregnated fabrics with loading speeds of 100, 500 and 1000 mm/min were carried out respectively. The experimental results show that STF impregnated fabrics have higher yarn pull-out loads than neat fabrics, and show a correlation of yarn pullout speed. A new energy absorption model is proposed to analyze the energy absorption mechanism in yarn pullout test. It is concluded that the work done by external force in yarn pull-out test can be equivalent to the energy dissipation of friction between yarns. The friction energy dissipation of STF impregnated fabrics is obviously increased compared with that of neat fabrics.

Personal information

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Male

Alma Mater:Dalian University of Technology (DUT)

Degree:Doctoral Degree

School/Department:State Key Laboratory of Industrial Equipment for Structral Analysis, Department of Engineering Mechanics

Discipline:Solid Mechanics. Applied and Experimental Mechanics. Engineering Mechanics. Mechanical Manufacture and Automation. Vehicle Engineering. Aerospace Mechanics and Engineering. mechanics of manufacturing process

Business Address:Room 321, Department of Engineering Mechanics

Contact Information:Tel.: 86 0411-84708406 Email: leizk@dlut.edu.cn

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version