个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor at the Institute of Advanced Measurement & Control Technology
其他任职:先进检测与控制技术研究所所长
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 化学工程
办公地点:大连理工大学控制科学与工程学院先进检测与控制技术研究所
大连市凌工路2号大连理工大学海山楼A座724室
联系方式:Tel:(0411)84706465 实验室网站:http://act.dlut.edu.cn/
电子邮箱:tliu@dlut.edu.cn
Identification of Hammerstein systems with time delay under load disturbance
点击次数:
论文类型:期刊论文
发表时间:2018-05-01
发表刊物:IET CONTROL THEORY AND APPLICATIONS
收录刊物:SCIE、EI
卷号:12
期号:7
页面范围:942-952
ISSN号:1751-8644
关键字:nonlinear control systems; delays; time-varying systems; least squares approximations; Hammerstein systems; time delay; bias-eliminated Hammerstein-type output error model identification method; load disturbance response; time-varying parameter; recursive least-squares identification algorithms; one-dimensional searching approach; auxiliary OE model
摘要:To cope with load disturbance often encountered when performing identification tests on non-linear systems with input delay in industrial applications, a bias-eliminated Hammerstein-type output error (OE) model identification method is proposed in this study. By taking into account the load disturbance response as a time-varying parameter for estimation, two recursive least-squares (RLS) identification algorithms is established to estimate the Hammerstein-type model parameters and the time-varying disturbance response. A one-dimensional searching approach is adopted to determine the integer-type delay parameter by minimising the fitting error of output response. Moreover, an auxiliary OE model is constructed to ensure consistent estimation under stochastic noise. In addition, two adaptive forgetting factors are introduced into the proposed RLS algorithms to enhance the estimation convergence on the model parameters and the disturbance response. Asymptotic properties of parameter estimation are analysed along with a proof, in particular for unbiased estimation against a constant disturbance. Two illustrative examples are given to demonstrate the effectiveness of the proposed identification method.