个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor at the Institute of Advanced Measurement & Control Technology
其他任职:先进检测与控制技术研究所所长
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 化学工程
办公地点:大连理工大学控制科学与工程学院先进检测与控制技术研究所
大连市凌工路2号大连理工大学海山楼A座724室
联系方式:Tel:(0411)84706465 实验室网站:http://act.dlut.edu.cn/
电子邮箱:tliu@dlut.edu.cn
Identification of discrete-time output error model for industrial processes with time delay subject to load disturbance
点击次数:
论文类型:期刊论文
发表时间:2017-02-01
发表刊物:JOURNAL OF PROCESS CONTROL
收录刊物:SCIE、EI、Scopus
卷号:50
页面范围:40-55
ISSN号:0959-1524
关键字:Output error model; Time delay; Load disturbance; Convergence; Forgetting factor
摘要:In this paper, a bias-eliminated output error model identification method is proposed for industrial processes with time delay subject to unknown load disturbance with deterministic dynamics. By viewing the output response arising from such load disturbance as a dynamic parameter for estimation, a recursive least-squares identification algorithm is developed in the discrete-time domain to estimate the linear model parameters together with the load disturbance response, while the integer delay parameter is derived by using a one-dimensional searching approach to minimize the output fitting error. An auxiliary model is constructed to realize consistent estimation of the model parameters against stochastic noise. Moreover, dual adaptive forgetting factors are introduced with tuning guidelines to improve the convergence rates of estimating the model parameters and the load disturbance response, respectively. The convergence of model parameter estimation is analyzed with a rigorous proof. Illustrative examples for open- and closed-loop identification are shown to demonstrate the effectiveness and merit of the proposed identification method. (C) 2016 Elsevier Ltd. All rights reserved.