个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor at the Institute of Advanced Measurement & Control Technology
其他任职:先进检测与控制技术研究所所长
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 化学工程
办公地点:大连理工大学控制科学与工程学院先进检测与控制技术研究所
大连市凌工路2号大连理工大学海山楼A座724室
联系方式:Tel:(0411)84706465 实验室网站:http://act.dlut.edu.cn/
电子邮箱:tliu@dlut.edu.cn
Bias-eliminated subspace model identification under time-varying deterministic type load disturbance
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:JOURNAL OF PROCESS CONTROL
收录刊物:SCIE、EI
卷号:25
页面范围:41-49
ISSN号:0959-1524
关键字:Subspace identification; Orthogonal projection; Singular value decomposition; Extended observability matrix; Rank condition
摘要:Unexpected or time-varying deterministic type load disturbances are often encountered when performing identification tests in practical applications. A bias-eliminated subspace identification method is proposed in this paper by developing an orthogonal projection approach to guarantee consistent estimation on the deterministic part of the plant, in combination with a Maclaurin time series approximation on the output response arising from deterministic type load disturbance. The rank condition for such an orthogonal projection is disclosed in terms of the state-space model structure adopted for identification. Using principal component analysis (PCA), the extended observability matrix and the lower triangular Toeplitz matrix of the state-space model are explicitly derived. Accordingly, the plant state-space matrices can be retrieved from the above matrices through a shift-invariant algorithm. A benchmark example from the literature and an illustrative example of industrial injection molding are used to demonstrate the effectiveness and merit of the proposed identification method. (C) 2014 Elsevier Ltd. All rights reserved.