
教授 博士生导师 硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料学
功能材料化学与化工
化学工程
办公地点:材料楼330办公室
联系方式:
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-11
论文类型:期刊论文
发表时间:2012-03-11
发表刊物:金属学报
收录刊物:Scopus、CSCD、ISTIC、PKU、EI、SCIE
卷号:48
期号:03
页面范围:321-328
ISSN号:0412-1961
关键字:电迁移;Ni/Sn3.0Ag0.5Cu/Cu;界面反应;金属间化合物
摘要:研究了温度为150℃,电流密度为5.0×10~3A/cm~2的条件下电迁移对Ni/Sn3.0Ag0.5Cu/Cu焊点界面反应的影响.回流焊后在Sn3.0Ag0.5Cu/Ni和Sn3.0Ag0.5Cu/Cu的界面上均形成了(Cu,Ni)_6Sn_5型化合物.时效过程中界面化合物随时效时间增加而增厚,时效800 h后两端的化合物并没有发生转变,仍为(Cu,Ni)_6Sn_5型.电流方向对Cu基板的消耗起着决定作用.当电子从基板端流向芯片端时,电流导致基板端Cu焊盘发生局部快速溶解,并导致裂纹在Sn3.0Ag0.5Cu/(Cu,Ni)_6Sn_5界面产生,溶解到钎料中的Cu原子在钎料中沿着电子运动的方向向阳极扩散,并与钎料中的Sn原子发生反应生成大量的Cu_6Sn_5化合物颗粒.当电子从芯片端流向基板端时,芯片端Ni UBM层没有发生明显的溶解,在靠近阳极界面处的钎料中有少量的Cu_6Sn_5化合物颗粒生成,电迁移800 h后焊点仍保持完好.电迁移过程中无论电子的运动方向如何,均促进了阳极界面处(Cu,Ni)_6Sn_5的生长,阳极界面IMC厚度明显大于阴极界面IMC的厚度.与Ni相比,当Cu作为阴极时焊点更容易在