
教授 博士生导师 硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料学
功能材料化学与化工
化学工程
办公地点:材料楼330办公室
联系方式:
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-14
论文类型:期刊论文
发表时间:2006-01-01
发表刊物:JOURNAL OF ELECTRONIC MATERIALS
收录刊物:EI、SCIE
卷号:35
期号:1
页面范围:181-188
ISSN号:0361-5235
关键字:electroless Ni-P; lead-free solder; aging; intermetallic compound (IMC); growth kinetics
摘要:A comparative study of solid/solid interfacial reactions of electroless Ni-P (15 at.% P) with lead-free solders, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, and pure Sn, was carried out by performing thermal aging at 150 degrees C up to 1000 h. For pure Sn and Sn-3.5Ag solder, three distinctive layers, Ni3Sn4, SnNiP, and MY, were observed in between the solder and electroless Ni-P; while for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders, two distinctive layers, (CuNi)(6)Sn-5 and MY, were observed. The differences in morphology and growth kinetics of the intermetallic compounds (IMCs) at the interfaces between electroless Ni-P and lead-free solders were investigated, as well as the growth kinetics of the P-enriched layers underneath the interfacial IMC layers. With increasing aging time, the coarsening of interfacial Ni3Sn4 IMC grains for pure Sn and Sn-3.5Ag solder was significantly greater than that of the interfacial (CuNi)6Sn5 IMC grains for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders. Furthermore, the Ni content in interfacial (CuNi)(6)Sn-5, phase slightly increased during aging. A small addition of Cu (0.7 wt.%) resulted in differences in the type, morphology, and growth kinetics of interfacial IMCs. By comparing the metallurgical aspects and growth kinetics of the interfacial IMCs and the underneath P-enriched layers, the role of initial Cu and Ag in lead-free solders is better understood.