大连理工大学  登录  English 
黄明亮
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 材料科学与工程学院

学科: 材料学. 功能材料化学与化工. 化学工程

办公地点: 材料楼330办公室

联系方式: 0411-84706595

电子邮箱: huang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 黄明亮 >> 科学研究 >> 论文成果
Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient

点击次数:

论文类型: 期刊论文

发表时间: 2015-08-27

发表刊物: SCIENTIFIC REPORTS

收录刊物: SCIE、PubMed、Scopus

卷号: 5

页面范围: 13491

ISSN号: 2045-2322

摘要: The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250 degrees C and 280 degrees C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as + 11.12 kJ/mol at 250 degrees C and + 14.65 kJ/mol at 280 degrees C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82 x 10(-19) N and 6.80 x 10(-19) N.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学