Indexed by:期刊论文
Date of Publication:2015-07-07
Journal:JOURNAL OF MATERIALS CHEMISTRY C
Included Journals:SCIE、EI、Scopus
Volume:3
Issue:34
Page Number:8735-8759
ISSN No.:2050-7526
Abstract:Conventional triplet photosensitizers usually contain a single visible light-harvesting chromophore, which is responsible for the dual-functionality of light-harvesting and intersystem crossing (ISC). These profiles have a few disadvantages, such as a single absorption band in the visible spectral range, low efficiency of harvesting broadband visible light (e.g., solar light), and difficulty in designing new triplet photosensitizers because the relationship between molecular structure and ISC is unclear. To address these challenges, the application of the Forster resonance energy transfer (FRET) and spin converter can lead to a new molecular structure motif for triplet photosensitizers to attain the broadband visible light-absorption, as well as disintegrated functionality of visible light-harvesting and ISC. This Review article summarizes the triplet photosensitizers showing broadband visible light absorption, including the molecular design rationales, the photophysical processes involved in these photosensitizers, such as the FRET, ISC, and the photo-induced electron transfer (PET), studied with nanosecond and femtosecond transient absorption spectroscopies. The application of triplet photosensitizers in photoredox catalytic organic reactions and triplet-triplet annihilation upconversion are also discussed. We summarized the molecular structure-property relationship of these new photosensitizers, as well as the challenges in this emerging area.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Jilin University
Degree:Doctoral Degree
School/Department:School of Chemistry Engineering
Discipline:Organic Chemistry. Applied Chemistry. Physical Chemistry (including Chemical Physics)
Business Address:西部校区E座208房间
Contact Information:0411-84986236
Open time:..
The Last Update Time:..