![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:化工学院
学科:有机化学. 应用化学. 物理化学
办公地点:西部校区E座208房间
联系方式:0411-84986236
电子邮箱:zhaojzh@dlut.edu.cn
Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy
点击次数:
论文类型:期刊论文
发表时间:2016-11-09
发表刊物:JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
收录刊物:SCIE、EI、PubMed、ESI高被引论文、Scopus
卷号:138
期号:44
页面范围:14586-14591
ISSN号:0002-7863
摘要:Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NLR. absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Phi(Delta) = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nano particles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm(-2)). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.