赵建章

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:化工学院

学科:有机化学. 应用化学. 物理化学

办公地点:西部校区E座208房间

联系方式:0411-84986236

电子邮箱:zhaojzh@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Photoswitching of the Triplet Excited State of DiiodoBodipy-Dithienylethene Triads and Application in Photo-Controllable Triplet-Triplet Annihilation Upconversion

点击次数:

论文类型:期刊论文

发表时间:2014-11-21

发表刊物:JOURNAL OF ORGANIC CHEMISTRY

收录刊物:SCIE、EI、PubMed、Scopus

卷号:79

期号:22

页面范围:10855-10866

ISSN号:0022-3263

摘要:Dithienylethene (DTE)-2,6-diiodoBodipy triads were prepared with the aim to photoswitch the triplet excited state of the 2,6-diiodoBodipy moiety. Bodipy was selected due to its low T-1 state energy level to avoid sensitized photocyclization of DTE, which is very often encountered in DTE photoswitches, so that the photochemistry of DTE and the organic chromophore can be addressed independently. This is the first time that DTE was covalently connected with an organic triplet photosensitizer. For the triad with DTE-o structure, selective photoexcitation into the diiodoBodipy part did not initiate photocyclization of DTE-o. Upon photoirradiation at 254 nm, thus the DTE-o -> DTE-c transformation, the intersystem crossing (ISC) of 2,6-diiodoBodipy moiety was competed by the photoactivated resonance energy transfer (RET), with Bodipy as the intramolecular energy donor and DTE-c as energy acceptor. The fluorescence of Bodipy was quenched and the triplet state lifetime of Bodipy was reduced from 105.1 to 40.9 mu s. The photoreversion is O-2-independent, but can be greatly accelerated upon selective photoexcitation into the diiodoBodipy absorption band (at 535 nm). We concluded that ISC is not outcompeted by RET. The photoswitching of the triplet state was transduced to the singlet oxygen photosensitizing, as well as triplet-triplet annihilation upconversion.