赵建章

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:化工学院

学科:有机化学. 应用化学. 物理化学

办公地点:西部校区E座208房间

联系方式:0411-84986236

电子邮箱:zhaojzh@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes

点击次数:

论文类型:期刊论文

发表时间:2013-05-28

发表刊物:CHEMISTRY OF MATERIALS

收录刊物:SCIE、EI、ESI高被引论文、Scopus

卷号:25

期号:10

页面范围:2146-2153

ISSN号:0897-4756

关键字:phenothiazine; dye-sensitized solar cells; pi-conjugation; aggregation; charge recombination

摘要:A series of simple phenothiazine-based dyes have been synthesized, in which a cyanoacrylate acceptor directly attached to the C(3) position of phenothiazine, and an additional linear electron-rich (4-hexyloxy)phenyl group at C(7) on the opposite side of the acceptor, and an alkyl chain with different length at N(10) of the phenothiazine periphery are presented. The dye molecules have a linear shape which is favorable for the formation of a compact dye layer on the TiO2 surface, while their butterfly conformations can sufficiently inhibit molecular aggregation. Moreover, the structural features of (4-hexyloxy)phenyl donor moiety at the C(7) position of phenothiazine extends the pi-conjugation of the chromophore, thus enhancing the performance of dye-sensitized solar cells (DSSCs). Moreover, the alkyl substituents with different chain length at the N(10) atom of phenothiazine could further optimize the performance through completely shielding the surface of TiO2 from the I-/I3- electrolyte and subsequently reducing the leakage of dark current. Under simulated AM 1.5G irradiation, the PT-C6 based DSSC produces a short-circuit photocurrent of 15.32 mA cm(-2), an open-circuit photovoltage of 0.78 V, a fill factor of 0.69, corresponding to a power conversion efficiency (PCE) of 8.18%, which exceeds the reference N719 (7.73%) under identical fabrication conditions. Notably, the designed molecular structure represents the highest photovoltaic conversion efficiency value when compared with other reported phenothiazine-derived dyes.