个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:化工学院
学科:有机化学. 应用化学. 物理化学
办公地点:西部校区E座208房间
联系方式:0411-84986236
电子邮箱:zhaojzh@dlut.edu.cn
Observation of Room-Temperature Deep-Red/Near-IR Phosphorescence of Pyrene with Cycloplatinated Complexes: An Experimental and Theoretical Study
点击次数:
论文类型:期刊论文
发表时间:2010-10-01
发表刊物:EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
收录刊物:SCIE、Scopus
期号:28
页面范围:4470-4482
ISSN号:1434-1948
关键字:Sensors; Phosphorescence; Platinum; Fluorescence; Density functional calculations
摘要:Pyrene-containing cyclometallated Pt(II) complexes, with the pyrene moiety directly cyclometallated (Pt-1) or connected to a 2-phenylpyridine (ppy) ligand through a C-C (Pt-2) or C C bond (Pt-3), and a control complex with a phenyl group attached to the ppy ligand (Pt-4) have been prepared. Room-temperature deep-red/near-IR (NW) phosphorescence emission (650-800 nm) was observed for Pt-1, Pt-2 and Pt-3, whereas Pt-4 showed emission at 528 nm. We found that Pt-2, in which the pyrene moiety is not directly cyclometallated, shows intense pyrene-based phosphorescence, which contrasts with a previous report that direct cyclometallation is necessary for the observation of the phosphorescence of pyrene in cyclometallated complexes. Besides the phosphorescence emission in the deep-red/near-IR range, a fluorescence emission band at higher energy was observed. Thus, these complexes can be described as unichromophore multi-emissive materials. Normal (3)MLCT/(3)IL emission at 528 nm was observed for Pt-4. The UV/Vis absorption and phosphorescence emissions of the complexes were rationalized by DFT/TDDFT calculations. Theoretical calculations propose pyrene-localized T(1) states ((3)IL) for Pt-1, Pt-2 and Pt-3, which is supported by the experimental results. The complexes were used in luminescent O(2)-sensing experiments. These studies will be helpful in the development of room-temperature phosphorescent materials and their application as luminescent molecular sensing or electroluminescent materials are promising.