APPROXIMATE EQUIVALENCE OF REPRESENTATIONS OF AF ALGEBRAS INTO SEMIFINITE VON NEUMANN ALGEBRAS
- 论文类型:期刊论文
 - 发表刊物:OPERATORS AND MATRICES
 - 收录刊物:SCIE
 - 卷号:13
 - 期号:3
 - 页面范围:777-795
 - ISSN号:1846-3886
 - 关键字:Weyl-von Neumann theorem; Voiculescu's theorem; AF algebras; countably decomposable semifinite von Neumann algebras
 - 摘要:In this paper, we extend the "compact operator" part of Voiculescu's theorem on approximate equivalence of unital *-homomorphisms of an AF algebra when the range is in a countably decomposable, semifinite, properly infinite von Neumann factor. We also extend a result of Hadwin for approximate summands of representations into a finite von Neumann factor.
 - 发表时间:2019-09-01
 

