• English

  • 大连理工大学

  • 登录

石瑞 教授

石瑞,大连理工大学数学科学学院教授,博士生导师,主要从事泛函分析中算子理论及算子代数相关的研究工作。(α) 主持并参加多项国家自然科学基金;(β) 主要研究兴趣为泛函分析中的算子理论与算子代数。近些年围绕算子代数中的算子理论(如von Neumann代数中正规算子在紧扰动下的对角化、相对不可约算子与可约算子的稠密性等等)以及算子代数的表示理论、分类理论等取得一部分相关研究成果。在《Adv. Math.》、《J. Funct. Anal.》、《J. Noncommut. Geom.》、《SCIENCE CHINA Mathematics》、《Integral Equations Operator Theory》、《Proc. Amer. Math. Soc. 》等学术期刊发表科研论文若干。(γ) 主讲课程:泛函分析、高等数学、...

查看更多>>

A generalization of Voiculescu's theorem for normal operators to semifinite von Neumann algebras

发布时间: 2021-03-05 点击次数:

  • 论文类型:期刊论文
  • 发表刊物:ADVANCES IN MATHEMATICS
  • 卷号:375
  • 页面范围:107347-
  • ISSN号:0001-8708
  • 关键字:Weyl-von Neumann theorem; Voiculescu's Theorem; Normed ideal; Phi-well-behaved sets; von Neumann algebras
  • 摘要:In this paper, we provide a generalized version of Voiculescu's theorem for normal operators by showing that, in a von Neumann algebra with separable pre-dual and a faithful, normal, semifinite, tracial weight tau, each normal operator is an arbitrarily small (max{parallel to.parallel to, parallel to.parallel to(2)})-norm perturbation of a diagonal operator. Furthermore, in a countably decomposable, properly infinite von Neumann algebra with a faithful normal semifinite tracial weight, we prove that each self-adjoint operator can be diagonalized modulo normed ideals satisfying a natural condition. An analogue, for nuclear C*-algebras, of Voiculescu's absorption theorem [33, Theorem 2.4] is also proved in the case of semifinite factors. (C) 2020 Elsevier Inc. All rights reserved.
  • 发表时间:2021-01-10