Indexed by:期刊论文
Date of Publication:2021-01-10
Journal:SENSOR REVIEW
Volume:40
Issue:5
Page Number:605-615
ISSN No.:0260-2288
Key Words:Dyadic interaction; Body sensor networks; Affective actions
Abstract:Purpose Dyadic interactions are significant for human life. Most body sensor networks-based research studies focus on daily actions, but few works have been done to recognize affective actions during interactions. The purpose of this paper is to analyze and recognize affective actions collected from dyadic interactions. Design/methodology/approach A framework that combines hidden Markov models (HMMs) and k-nearest neighbor (kNN) using Fisher kernel learning is presented in this paper. Furthermore, different features are considered according to the interaction situations (positive situation and negative situation). Findings Three experiments are conducted in this paper. Experimental results demonstrate that the proposed Fisher kernel learning-based framework outperforms methods using Fisher kernel-based approach, using only HMMs and kNN. Practical implications The research may help to facilitate nonverbal communication. Moreover, it is important to equip social robots and animated agents with affective communication abilities. Originality/value The presented framework may gain strengths from both generative and discriminative models. Further, different features are considered based on the interaction situations.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:控制科学与工程学院副院长
Other Post:中国电子教育学会高等教育分会理事、辽宁省药学会专委会副主任委员
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:控制科学与工程学院
Discipline:Control Theory and Control Engineering
Business Address:海山楼 A11326
Contact Information:+86 壹355683491陆
Open time:..
The Last Update Time:..